OpenAI lanza GPT-4o Mini, nuevo modelo ligero y económico: ¿qué es y cómo usarlo?
La compañía también ha indicado que GPT-4o mini admite texto y visión.
OpenAI ha lanzado una versión más ligera y económica de su modelo GPT-4o destinada a los desarrolladores que tendrá soporte para entradas y salidas de archivos de diferentes formatos.
La oferta de modelos de lenguaje de OpenAi ha crecido este jueves con GPT-4o mini, un modelo ideado para hacer tareas pequeñas y dirigido a desarrolladores que no pueden permitirse recurrir a modelos más caros.
Con GPT-4o mini, la firma se introduce en el mercado de los modelos ligeros y económicos, para facilitar el acceso a esta tecnología a más personas, como ha explicado a The Verge.
Este modelo sustituye a GPT-3.5 Turbo en los planes de suscripción Gratuito, Plus y Team, y llegará al de empresa en los próximos días. GPT-3.5, por su parte, pasará a estar disponible para los desarrolladores a través de la API.
La compañía también ha indicado que GPT-4o mini admite texto y visión, y próximamente tendrá soporte para entradas y salidas de archivos de diferentes formatos, también de audio y vídeo.
¿Cómo entrenan a ChatGPT?
OpenAI ha mostrado una nueva forma de entrenar sus modelos de Inteligencia Artificial (IA) que se basa en una metodología de juego de comprobación y verificación, con la que consigue que el texto que generan los modelos de lenguaje grandes (LLM, por sus siglas en inglés) sea mucho más fácil de leer para los humanos y verificar para modelos más pequeños.
OpenAI ha compartido una nueva forma de entrenar a sus modelos de IA que se basa en el método conocido como “juegos de comprobación y verificación”, con el que los textos resultantes son mucho más sencillos de leer e interpretar para las personas.
Tal y como ha explicado la compañía dirigida por Sam Altman en un comunicado en su web, a la hora de entrenar sus modelos de IA, cuando optimizan el proceso de resolución de problemas de modelos grandes, las soluciones resultantes “pueden volverse cada vez más difíciles de entender”. Esto dificulta tanto la comprensión humana como la forma de evaluar si se trata de respuestas correctas.
Sin embargo, los investigadores de la tecnológica han descubierto que, al entrenar modelos de lenguaje avanzados para crear textos que, después, los modelos más débiles pueden verificar fácilmente, la IA acaba desarrollando resultados que los humanos también pueden evaluar de manera más efectiva y, por tanto, comprender más fácilmente.
Así, se trata de un proceso con el que OpenAI asegura “mejorar la legibilidad” y se basa en una serie de juegos de comprobación y verificación. Esto es, un marco teórico de juegos diseñado para “alentar a los agentes de aprendizaje a resolver problemas de decisión de una manera verificable”, tal y como lo definen los investigadores de aprendizaje automático de la Cornell University, quienes descubrieron este sistema en 2021.